Aromatic Hydroxylation by O(³P) Atoms on γ-Radiolysis of Liquid Carbon Dioxide Solutions of Alkylbenzenes

BY AKIRA HORI, HIROYUKI MATSUMOTO, SETSUO TAKAMUKU,* and HIROSHI SAKURAI (The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565, Japan)

Summary Hydroxylated products have been produced by the attack of $O({}^{3}P)$ atoms, generated by γ -radiolysis of liquid CO_{2} , on alkylbenzene at the following sites: aromatic methine carbon, aromatic ring carbon bearing a substituent accompanied by 1,2-shift of the substituent (NIH shift) or removal of the substituent, and alkyl substituent. **REACTIONS** of $O({}^{3}P)$ atoms with organic compounds have been studied extensively in the gas phase,¹ but rather less in the liquid phase.²⁻⁵ Recently, aromatic hydroxylation by the oxygen atom transfer reaction of aromatic amine *N*-oxides has been investigated as a model for the reaction of mono-oxygenase enzymes.^{6,7} It is not certain whether or not the oxidizing species in the photolysis of the *N*oxides are oxygen atoms. We have already reported the reaction of $O({}^{3}P)$ atoms, produced by γ -ray-induced dissociation of CO_{2} into CO + O, with hydrocarbons (alkane, alkene, and alkyne).²

We have now applied a similar procedure to aromatic hydrocarbons and observed the occurrence of the NIH shift,⁸ which is known to be a characteristic rearrangement for aromatic hydroxylation by mono-oxygenase enzymes.

 γ -Radiolysis of liquid CO₂ (1·4 mol) in the presence of aromatic hydrocarbons (0·1—0·2 M) was carried out in a stainless steel autoclave (65 ml) using a ⁶⁰Co source at 0 °C for 1 h.†

The results (Table) indicate that the hydroxylation of aromatic hydrocarbons by $O({}^{3}P)$ atoms can be classified into four types: (i) hydroxylation of the aromatic methine carbon to produce the corresponding phenols (main reaction), (ii) hydroxylation of the aromatic ring at the 1position accompanied by 1,2-shift of the methyl group, the NIH shift (in the case of o- and p-xylene, and 1,2,3-trimethylbenzene), (iii) hydroxylation of the aromatic ring with removal of the substituent (in the case of 1,2,3trimethylbenzene), and (iv) hydroxylation of the alkyl substituent (in the case of ethylbenzene and o-, m-, and p-xylene).

The total G-value (molecule/100 eV) of hydroxylated products depends on the substrate. The maximum G-value, 4.6, for m-xylene, indicated that the most of the $O({}^{3}P)$ atoms produced were trapped, because G(CO), and therefore accordingly G(O), has been reported to be 3.5-5.0 on γ -radiolysis of liquid CO_{2} .⁹

The relative rate constant, k_{rel} , was determined by measurements on competitive reactions, between two aromatic hydrocarbons for $O({}^{3}P)$ atoms (Table). The k_{rel} values decrease with increasing ionization potential of aromatic hydrocarbons, indicating that $O({}^{3}P)$ atoms are electrophilic and that the transition state for the reaction is predominantly charge-transfer in character. In addition, the dependence of k_{rel} on ionization potential and the products obtained in this study are similar to results obtained in gas-phase studies,^{1,10} which is consistent with the oxidizing species being $O({}^{3}P)$ atoms.[‡]

Hydroxylation of an equimolar mixture of benzene and $[{}^{2}H_{6}]$ benzene under the present conditions and subsequent analysis of the phenols by mass spectrometry gave a value of 1·1 for the intermolecular hydrogen isotope effect, $k_{\rm H}/k_{\rm D}$. This small isotope effect shows that cleavage of aromatic C-H bonds does not occur in the rate-determining step of the hydroxylation. On the basis of these results, we suggest the pathway in the Scheme for the reaction of O(${}^{3}P$) atoms with *p*-xylene as being typical.

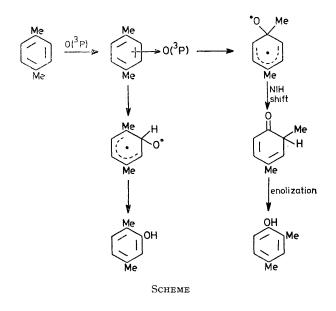


TABLE. y-Radiolysis of liquid CO₂ solutions of aromatic hydrocarbons

Substrate		k _{rel} a	Total G-value	Product (% relative yield)	% NIH shift of Me
Benzene		1.0	0.3	Phenol (100b)	
Toluene	••	$3 \cdot 2$	$2 \cdot 0$	o-Cresol (62); m- and p-cresol (37); phenol (1)	
Ethylbenzene	••	3.9	$2 \cdot 7$	o-Ethylphenol (52); m- and p-ethylphenol (41); MeCHPhOH (5); PhCH ₂ CH ₂ OH (2)	
t-Butylbenzene		6.7	$2 \cdot 3$	o-t-Butylphenol (42); m- and p-t-butylphenol (56); phenol (2)	
o-Xylene	••	7.5	$3 \cdot 1$	3,4-Xylenol (52); 2,3-xylenol (35); 2,6-xylenol (7); o-MeC _s H ₄ CH ₂ OH (6)	7
<i>m</i> -Xylene	••	20.8	4 ·6	2,4-Xylenol (61); 2,6-xylenol (32); m-MeC ₆ H ₄ CH ₂ OH (4); 3,5-xylenol (3)	
<i>p</i> -Xylene		13.9	3.4	2,5-Xylenol (91); 2,4-xylenol (5); p -MeC ₈ H ₄ CH ₂ OH (4)	5
1,2,3-Trimethylbenzene	••	19.5	$2 \cdot 2$	2,3,4-Trimethylphenol (73); 2,6-xylenol (10); 3,4,5-trimethyl- phenol (9); 2,3,6-trimethylphenol (8)	8
1,3,5-Trimethylbenzene	••	38.0	4 ·0	2,4,6-Trimethylphenol (100)	с

^a Relative rate constant of aromatic hydrocarbon to benzene. ^b Ca. 10-20% of unknown non-phenolic product was also obtained (mass spectra; m/e 110, 81, and 53). ^o Not detected.

† Reactions were continued to <10% completion to investigate the reaction mechanism. The dose rate, measured with a Fricke dosimeter solution, was $2\cdot 2 \times 10^{19} \text{ eV g}^{-1} \text{ h}^{-1}$. The products were identified by comparison of g.l.c. retention times (Ucon Oil LB 550X, 3 m; Silicone DC 550, 9 m) and mass spectra (Hitachi RMS-4 (GC/MS) with those of authentic samples.

 $\uparrow \gamma$ -Ray induced oxidation of toluene in liquid CO₂ has been reported by Sato *et. al.*, but the oxidizing species causing hydroxylation were suggested to be anionic (K. Ishizaki and S. Sato, *Chem. Letters*, 1975, 123).

It is interesting that $O(^{3}P)$ atoms cause an NIH shift of methyl groups in di- or tri-methylbenzene having orthoor para-methyl substituents. This selectivity can be accounted for by the ortho- and para-orientation of $O({}^{3}P)$ atoms. The occurrence of an NIH shift of methyl groups in the gas-phase reaction of $O(^{3}P)$ atoms with aromatic hydrocarbons¹⁰ or in the photolysis of pyridazine N-oxide solution containing a polymethylbenzene has not been reported.7§

We thank Mr. Norio Kimura for measurement of mass spectra, and Mr. Tomikazu Sawai and Mr. Tamotsu Yamamoto for assistance with γ -irradiation.

(Received, 5th September 1977; Com. 919.)

§ The NIH shift of deuterium has been reported to occur in the photolysis of a solution of an aromatic N-oxide containing a monosubstituted benzene (ref. 6).

¹ R. E. Huie and J. T. Herron, Progr. Reaction Kinetics, 1975, 8, 1; J. N. Pitts, Jr. and B. J. Finlayson, Angew. Chem. Internat. Edn., 1975, 14, 1.

- (an., 1910, 14, 1.
 ² A. Hori, S. Takamuku, and H. Sakurai, J. Org. Chem., 1977, 42, 2318, and refs. cited therein.
 ³ L. Wojnarovits, S. Hirokami, and S. Sato, Bull. Chem. Soc. Japan, 1976, 49, 2956.
 ⁴ T. H. Varkony, S. Pass, and Y. Mazur, J.C.S. Chem. Comm., 1975, 457.
 ⁵ S. Hirokami and R. J. Cvetanović, J. Amer. Chem. Soc., 1974, 96, 738.
 ⁶ D. M. Jerina, D. R. Boyd, and J. W. Daly, Tetrahedron Letters, 1970, 457.
 ⁷ T. Tsuchiya, H. Arai, and H. Igeta, Tetrahedron Letters, 1970, 2213, and refs. cited therein.
 ⁸ D. M. Jerina H. Vari, and H. W. Daly, Hotarocular, 1973, 1, 267.

- ⁸ D. M. Jerina, H. Yagi, and J. W. Daly, *Heterocycles*, 1973, 1, 267.
 ⁹ D. L. Baulch, F. S. Dainton, and R. L. S. Willix, *Trans. Faraday Soc.*, 1965, 61, 1146.
 ¹⁰ E. Grovenstein, Jr. and A. J. Mosher, *J. Amer. Chem. Soc.*, 4970, 92, 3810.